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a b s t r a c t

Empirical rainfall thresholds are commonly used to forecast landslide occurrence in wide areas.
Thresholds are affected by several uncertainties related to the rainfall and the landslide information
accuracy, the reconstruction of the rainfall responsible for the failure, and the method to calculate the
thresholds. This limits the use of the thresholds in landslide early warning systems. To face the problem,
we developed a comprehensive tool, CTRLeT (Calculation of Thresholds for Rainfall-induced Land-
slides�Tool) that automatically and objectively reconstructs rainfall events and the triggering conditions
responsible for the failure, and calculates rainfall thresholds at different exceedance probabilities.
CTRL�T uses a set of adjustable parameters to account for different morphological and climatic settings.
We tested CTRL�T in Liguria region (Italy), which is highly prone to landslides. We expect CTRL�T has an
impact on the definition of rainfall thresholds in Italy, and elsewhere, and on the reduction of the risk
posed by rainfall-induced landslides.
© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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Name: CTRLeT (Calculation of Thresholds for Rainfall-induced
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Developer: Massimo Melillo
Contact Address: CNR-IRPI, via Madonna Alta 126, 06128 Perugia,
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1. Introduction

Landslides are natural and human-induced phenomena that
affect all continents, playing an important role in the evolution of
landscapes and posing a serious threat to the population (Keefer
elillo).

r Ltd. This is an open access article
and Larsen, 2007; Nadim et al., 2006, 2013; Petley, 2012). Rainfall
is a recognized trigger of landslides, and this explains why there is a
vast scientific literature on the relationship between rainfall and
landslide occurrence. At regional and global scales, empirical
rainfall thresholds are among themost used tools for the prediction
of rainfall-induced slope failures. Several authors have proposed
different methods for the calculation of rainfall thresholds through
the statistical analysis of empirical distributions of rainfall condi-
tions that have presumably resulted in landslides e including
cumulated event rainfall vs. rainfall duration or mean rainfall in-
tensity vs. rainfall duration (e.g., Aleotti, 2004; Guzzetti et al., 2007,
2008; Brunetti et al., 2010; Berti et al., 2012; Giannecchini et al.,
2012; Martelloni et al., 2012; Peruccacci et al., 2012; Staley et al.,
2013; Segoni et al., 2014; Rosi et al., 2016; Galanti et al., 2017).
Some authors have considered both rainfall conditions that have
and have not resulted in landslides and have used optimization
techniques to define the optimal thresholds (e.g., Berti et al., 2012;
Staley et al., 2013; Peres and Cancelliere, 2014). On the other hand,
attempts to predict the occurrence of rainfall-induced landslides by
means of a physically-based approach are present in the scientific
literature (e.g., Lepore et al., 2017; Alvioli et al., 2014; Alvioli and
Baum, 2016; An et al., 2016; Peres and Cancelliere, 2016).

Empirical rainfall thresholds are affected by several un-
certainties, including: (i) the availability and quality of the rainfall
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Fig. 1. Logical framework of the algorithm in CTRL�T. Grey and blue-bordered boxes
represent actions already implemented in the previous release of the algorithm and
the new additional actions, respectively. (For interpretation of the references to colour
in this figure legend, the reader is referred to the Web version of this article.)
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measurements and of the landslide information (Guzzetti et al.,
2007; Berti et al., 2012; Peruccacci et al., 2012; Nikolopoulos
et al., 2014; Gariano et al., 2015; Marra et al., 2017; Peres et al.,
2017); (ii) the characterization of the rainfall event responsible
for the landslides (Guzzetti et al., 2007; Iadanza et al., 2016); (iii)
the heuristic or statistical methods used to determine the thresh-
olds (Peruccacci et al., 2012, 2017; Vennari et al., 2014). As for the
first point, uncertainty exists especially in rainfall series containing
large data gaps. Depending on the information source, uncertainty
can also affect the geographical and the temporal location of the
failure. Gariano et al., 2015 found that even a small (1%) lack of
landslide information can result in a significant decrease in the
performance of a threshold-based prediction model. Uncertainty in
the characterization of rainfall data has a strong impact on the
identification of the thresholds, often resulting in their underesti-
mation, leading to a high number of false alarms in early warning
system applications (Nikolopoulos et al., 2014; Marra et al., 2017;
Peres et al., 2017). Regarding the second point, Melillo et al., 2015
highlighted how standards for measuring landslide-triggering
rainfall conditions are still lacking or insufficiently formalized in
literature. Indeed, how the rainfall responsible for the landslide
occurrence is calculated and whether its definition is reliable it is
rarely reported, thus reducing the possibility of comparing different
thresholds. Concerning the last point, the majority of empirical
rainfall thresholds available in the literature are calculated using
subjective and scarcely repeatable methods. Only few attempts
were recently made to conceive procedures for an objective and
reproducible definition of thresholds (Brunetti et al., 2010;
Martelloni et al., 2012; Staley et al., 2013; Segoni et al., 2014; Vessia
et al., 2014; Melillo et al., 2015; Piciullo et al., 2017; Peruccacci et al.,
2017). We maintain that the quantitative identification of the
landslide-triggering rainfall and the definition of reliable thresh-
olds are fundamental steps towards a well-founded landslide
prediction.

In this work, we upgraded the algorithm proposed by Melillo
et al. (2015, 2016), introducing new criteria to select automati-
cally (i) the representative rain gauge (i.e., the most representative
measuring station suitable to reconstruct the landslide-triggering
rainfall) and (ii) the rainfall conditions responsible for landslides.
The algorithm standardizes the actions performed by an investi-
gator that defines rainfall events starting from series of rainfall
records and landslide occurrence dates. In addition, the algorithm,
modelling the cumulated event rainfall, identifies the rainfall con-
ditions responsible for the observed failures and calculates rainfall
thresholds at different exceedance probabilities (Brunetti et al.,
2010; Peruccacci et al., 2012). The algorithm is implemented in a
tool (CTRL�T, Calculation of Thresholds for Rainfall-induced Land-
slides�Tool) written in R open-source software (Appendix A).

The paper is organized as follows. First, we describe the tool and
the main upgrades and improvements herein proposed in the al-
gorithm (Section 2), then we describe data and study area (Section
3) and some specific parameters (Section 4). In Section 5, we show
the results obtained from its application in the study area (Liguria,
northwestern Italy). This is followed, in Section 6, by a discussion
on the main advantages of the tool, and its potential application for
the reconstruction and assessment of the rainfall conditions that
can initiate landslides in wide geographical areas. We conclude
(Section 7) summarizing the main findings of the work.

2. Description of CTRL¡T

CTRL�T contains an improved version of the algorithm pro-
posed by Melillo et al. (2015, 2016). The former version of the al-
gorithm allowed: (i) the reconstruction of distinct rainfall events
(by pre-processing and analyzing rainfall measurements and
aggregating rainfall sub-events); (ii) the identification of multiple
rainfall conditions responsible for the triggering of documented
landslides; (iii) the definition of rainfall thresholds for possible
landslide occurrence. The former algorithm used pre-defined pa-
rameters to account for different seasonal and climatic conditions.
CTRL�T includes new criteria to reconstruct automatically the
rainfall conditions responsible for landslides and to define rainfall
thresholds at different exceedance probabilities. Fig. 1 illustrates
the logical framework of the improved algorithm. The “INPUT” data
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is composed by: (i) setting parameters of the rainfall events, (ii)
rainfall data, (iii) rain gauge locations, (iv) landslide locations, and
(v) landslide occurrence times. In Fig. 1, grey-bordered boxes
represent actions already implemented in the previous version of
the algorithm, while blue-bordered boxes highlighted the new
additional actions.

The algorithm is divided into three main logical blocks (Fig. 1).
The “BLOCK 1” executes the reconstruction of the rainfall events
(RE) using the setting parameters and the rainfall series obtained by
the rain gauges located in the study area. A rainfall event is a period
of continuous rainfall, or an ensemble of periods of continuous
rainfall, separated from the preceding and the successive events by
dry (no-rain) periods. The parameters are selected according to the
climate conditions of the area (Melillo et al., 2015; see Section 4).

Using the information on the location of rain gauges and land-
slides provided by the “INPUT” section, “BLOCK 2” picks out the rain
gauges closest to each landslide. Details about the selection of rain
gauges are reported in Section 2.1. In the following action of the
same block, for each selected rain gauge, the algorithm identifies
the rainfall event associated with the landslide. Adopting a
modelling of the cumulated event rainfall described in Section 2.2,
and using criteria reported in Melillo et al. (2015), the algorithm
reconstructs the single or the multiple rainfall conditions (MRC)
likely responsible for each failure. MRC can be a (DL,EL) pair of
rainfall event duration (DL) and cumulated event rainfall (EL), or a
set of two or more pairs. Through an empirical relation that in-
cludes the distance between the rain gauge and the landslide, DL

and EL (see Section 2.3), a weight w is assigned to each pair of the
MRC data set. For each landslide, among the selected rain gauges,
theMRC corresponding to themaximumw is that likely responsible
Fig. 2. Selection of rain gauges (yellow triangles) in a circular area (buffer) centered in t
interpretation of the references to colour in this figure legend, the reader is referred to the
for the failure.
In the “BLOCK 3”, the set of the MRC associated to all the

available landslides is used to calculate the rainfall thresholds
(Section 2.4).

In the following sections, we describe in detail the new actions
included in the improved version of the algorithm.
2.1. Rain gauge selection procedure

In the previous release of the algorithm (Melillo et al., 2015), the
selection of the representative rain gauge was done manually
through multiple queries to the database of rainfall measurements.
In the new release, the algorithm was improved to select auto-
matically the representative rain gauge for a specific landslide from
a pool of rain gauges close to the landslide (Fig. 2).

The geographical locations of the landslides and of the rainfall
stations are a necessary input of CTRL�T (Fig. 1). For each failure,
nearby rain gauges are located in a circular area (buffer) centered
on the landslide location and with a parametrized radius (Rb, in
Fig. 2). Rb depends chiefly on the morphological settings of the
study area and on the rain gauge density. As an example, in
mountain regions where the altitude changes abruptly, the buffer
radius should not exceed 5 km, whereas in flat regions with low
rain gauge density it can increase to 15 km. The representative rain
gauge used to reconstruct the rainfall responsible of the failure is
identified successively after an objective analysis of the recon-
structed MRC conditions (Section 2.3).
he landslide location (red dot) with a parametrized radius (dashed black line). (For
Web version of this article.)
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2.2. Modelling the cumulated rainfall responsible for the failure

In the previous release of the algorithm, the contribution of the
rainfall to the landslide occurrence was fully included regardless of
the time elapsed since the start of the rain; hence, any possible
effect of the soil water saturation was neglected. To overcome this
problem, CTRL�T models the rainfall by applying an arbitrary
constant decay factor (e.g., k¼ 0.84) to the cumulated event rainfall
EL, as proposed by Crozier (1999):

EL ¼ ELð0Þ þ kELð1Þ þ k2ELð2Þ þ…þ kNELðNÞ ¼
XN

i¼0

ki½ELðiÞ�

(1)

where EL (0) is the cumulated rainfall in the 24 h before the land-
slide occurrence time (tL), EL(i) is the cumulated rainfall in the 24 h
of the i-th day before tL, and N is the duration of the rainfall event in
days (i.e., steps of 24 h). As an example, the rainfall contribution to
the amount of rainfall in the 5th day before the landslide reduces to
about one half (49.8%) of the measured rain. The k decay factor can
be changed according to the soil moisture drainage of the local
study area.
2.3. Weight assignement

For each landslide, the algorithm proposed by Melillo et al.
(2015) identified a variable number n of single (n¼ 1) or multiple
rainfall conditions likely responsible for the failure. All the recon-
structed (DL,EL) pairs were considered equally-probable (i.e., with
the same weight w¼ 1) landslide triggering conditions. In a suc-
cessive release of the algorithm (Melillo et al., 2016), the rainfall
conditions were selected with a weight w inversely proportional to
n (w¼ 1/n). With that assumption, the weight of a rainfall condi-
tion would not depend on the DL and EL variables, but only on its
multiplicity n (w¼ f(n)). Here, we propose a new empirical
meaning of w, which is proportional to the inverse square distance
between the rain gauge and the landslide (d-2), the cumulated
rainfall (EL), and the rainfall mean intensity (ELDL-1):

w ¼ fðd; EL;DLÞ ¼ d�2E2L D
�1
L (2)

The weight is attributed to each (DL,EL) pair of the MRC data set.
For multiple (DL,EL) pairs (i.e., rainfall conditions with increasing
duration and increasing cumulated rainfall), when the difference in
the cumulated rainfall EL between one pair and the subsequent is
less than 10%, the weight attributed to the latter pair is null (w¼ 0)
and this condition is removed from theMRC data set. Similarly, w is
null for rainfall conditions having a delay between the rainfall
ending time and the landslide occurrence time longer than an
assigned time set to 48 h. This last requirement prevents the use of
wrong information (i.e., incorrectly dated landslides) in the
threshold definition. Indeed, we expect that the considered land-
slides are mostly shallow and therefore occur within a short delay
after the triggering rainfall.

For each landslide, w is used to identify the representative rain
gauge, considering both geographical and rainfall features, and to
determine the probability of the single or multiple rainfall condi-
tions to be adopted for the calculation of rainfall thresholds. For a
pool of stations enclosed in the radius Rb, the representative rain
gauge is the one for which the (DL,EL) pair has the highestw. In case
of multiple pairs, each w is normalized to the sum of the individual
weights, whereas is set to one in case of a single condition. CTRL�T
calculates rainfall thresholds for MRC and MPRC (maximum prob-
ability rainfall conditions) data sets, where MPRC is the subset of
the (DL,EL) pairs with the highest weights.

2.4. Definition of rainfall thresholds

To define empirical rainfall thresholds and their associated un-
certainties, CTRL�T adopts a bootstrapping statistical technique
(Peruccacci et al., 2012) and a frequentist method (Brunetti et al.,
2010) by sampling the weighted rainfall conditions that have trig-
gered landslides. The general form of the threshold curves is a
power law:

E ¼ (a±Da)�D (g±Dg) (3)

where E is the cumulated event rainfall (in mm), D is the rainfall
event duration (in h), a is a scaling constant (the intercept), g is the
shape parameter (that defines the slope of the power law curve),
and Da and Dg represent the uncertainties of a and g, respectively.

In Eq. (3), a and g are the mean values of the parameters
resulting from the calculation of thresholds of 5000 synthetic series
generated by the algorithm. Da and Dg are the standard deviation
of a and g, respectively. Each synthetic series contains the same
number n of landslides as the original data set but selected
randomly with replacement (bootstrap technique). To calculate the
thresholds, a single (DL,EL) pair is associated to each landslide. For
each landslide in the individual synthetic series, the algorithm
samples randomly�with a probability w� a single rainfall condi-
tion from the MRC data set. The extracted (DL,EL) pairs of the n
landslide are used to define the thresholds. The algorithm also uses
the rainfall conditions with the maximum w to define thresholds
for the MPRC data set.

The output of the bootstrapping technique consists of 5000
synthetic series ofm (DL,EL) pairs. Analysis of them synthetic series
allows calculating the mean value and the uncertainty associated
with the threshold parameters (a and g) and their respective un-
certainties (Da, Dg).

3. Study area and data

We tested the tool using rainfall and landslide data available to
us for the Liguria region (5410 km2) in northwestern Italy. We used
hourly rainfall measurements collected in the 15-year period from
March 2001 to December 2014 by a network of 172 rain gauges
operated by the Osservatorio Meteo Idrologico della Regione Liguria
(OMIRL). Fig. 3 portrays the geographical distribution of the rain
gauges (yellow triangles), having an average density of about one
rain gauge every 31 km2.

Moreover, we exploited geographical and temporal information
on 561 rainfall-induced landslides occurred in Liguria between
October 2004 and November 2014 (red dots in Fig. 3). Among those,
there are 73 rock falls, 16 mudflows, 71 other types of landslides (e.g,
earth flows, debris blows, etc.), and 401 unspecified shallow land-
slides. On-line chronicles and reports of local fire brigades were the
exclusively information source for 337 (60%) and 51 (9%) landslides,
respectively. The remaining 173 events (31%) were reconstructed
using information from both sources. Generally, these last events
have both a high geographical and temporal accuracy.

4. Computation of the regional parameters

In a previous version of the algorithm applied in the Sicily Re-
gion (southern Italy), Melillo et al. (2015) used a heuristic approach
to separate two consecutive rainfall events. They selected a mini-
mum dry (i.e., with no rain) interval of 2 days (48 h) in the “warm”

period CW (AprileOctober), and a minimum of 4 days (96 h) in the
“cold” period, CC (NovembereMarch). In the same paper, the time



Fig. 3. Map showing the geographical location of 561 rainfall-induced landslides occurred in the Liguria region (northwestern Italy) between October 2004 and November 2014 (red
dots). Yellow triangles show the location of 172 rain gauges. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this
article.)
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required for the soil to dry out was assumed inversely proportional
to the amount of real evapotranspiration (RET), and they found a
ratioR ¼ RETðCW Þ=RETðCCÞ ¼ 2. However, depending on the local
seasonal and climatic conditions, the length (number of months) of
the CW and CC periods may vary and may lead R to vary accordingly
(Thorp, 1986). For this reason, among several methods proposed for
evaluating the evapotranspiration (Alley, 1984; Yates, 1996; Naoum
and Tsanis, 2003; Guo et al., 2016; Pumo et al., 2017), we calculated
the R value adopting themonthly soil water balance (MSWB)model
(Thornthwaite, 1948; Thornthwaite and Mather, 1957; Melillo,
2009; Di Matteo et al., 2011; Dragoni et al., 2015) and we deter-
mined the length (in months) of the CW and CC periods. The MSWB
model is a simplified approach (with only few input requirements),
and is commonly used to obtain reliable estimates of the water
balance components (e.g., potential and real evapotranspiration).
Input data of the MSWB model are: (i) the latitude; (ii) the average
monthly rainfall, Em; (iii) the average monthly temperature, Tm;
and (iv) the maximum field capacity or soil water storage (SWS).
We calculated Emusing data available from the network of 172 rain
gauges operated by the OMIRL in the Liguria Region (see section 3)
and Tm from data provided by thewebsite of Istituto Superiore per la
Protezione e la Ricerca Ambientale (www.scia.isprambiente.it) in the
period from January 2000 to December 2014. Fig. 4a shows a graph
Table 1
Soil water storage (SWS, mm) values as a result of crop rooting depth (RD) and available

RD (m)

0.45
Shallow

AWSC (mm/m) 208 - Silt loam 94
200 - Clay loam 90
175 - Loam 79
142 - Fine sandy loam 64
125 - Sandy loam 56
100 - Loamy sand 45
83 - Sand 37
(Bagnouls-Gaussen diagram) with the average monthly rainfall
(grey histogram) and the averagemonthly temperature (red line) in
the Liguria Region. Overall, the spatial variability of the tempera-
ture is about 1.6 �C. The month with the highest variability is
December (standard deviation, s, equal 2.0 �C), whereas June is the
monthwith the lowest one (s¼ 1.4 �C). The spatial variability of the
precipitation is 30.3mm. July and November are the months with
the lowest (s¼ 13.6mm) and the highest (s¼ 51.4mm) spatial
variability, respectively.

The SWS values were calculated according to the following
equation (Nyvall, 2002):

SWS¼ RD� AWSC (4)

where RD is the crop rooting depth (m), varying from “shallow”

(0.45m for leaf vegetables) to “deep” (1.20m for tree fruits), and
AWSC is the available water storage capacity of the soil (mm/m),
which ranges from 83mm/m (sand textural class) to 208mm/m
(silt textural class). Since RD and AWSC are not available for the
entire study area, we calculated all the possible SWS values
(Table 1) with equation (4).

Using the MSWB model, we estimated the average monthly
potential evapotranspiration PETm (green curve in Fig. 4b) and
water storage capacity (AWSC) values.

0.60
Medium Shallow

0.90
Medium Deep

1.20
Deep

125 187 250
120 180 240
105 158 210
85 128 170
75 113 150
60 90 120
50 75 100

http://www.scia.isprambiente.it


Fig. 4. (a) Average monthly rainfall (grey histogram) and the average monthly tem-
perature (red line) in the study area. (b) Average monthly potential evapotranspiration,
PETm, (green curve); mean value of RETm (orange curve) as a function of the month
and the range of variability of RETm (yellow shaded area). (c) Warm (red portion of the
histogram) and cold (green portion of the histogram) periods. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of
this article.)
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the average monthly real evapotranspiration RETm correspond-
ing to each SWS value. The yellow shaded area in Fig. 4b rep-
resents the range of variability of RETm obtained varying SWS.
The orange curve in the figure is the mean value of RETm. As
expected, RETm decreases in the warm period when the rainfall
(grey histogram in Fig. 4a) decreases. We found the CW and CC
periods using the average monthly Aridity Index, AIm, (Barrow,
1992):

AIm ¼ Em
PETm

(5)
Table 2
Statistics of the RE, MRC and MPRC data set obtained by CTRL�T.

Data set # Duration D (h)

min Q1 Q2 Q3

RE 43191 1 6 29 96
MRC 801 2 26 60 130
MPRC 440 2 19 34 62
Specifically, CW is the period when the soil exhibits a water
deficit and is mostly dry (Em less than PETm and AIm � 1), and is
from May to September (red portion of the histogram in Fig. 4c).
Conversely, the CC period is from October to April when AIm > 1
(green portion of the histogram in Fig. 4c).

Finally, we obtained R¼ 2.4± 0.3 calculating the ratio of the
total amount of RETm betweenMay and September (CWperiod) and
between October and April (CC period). The uncertainty of RET ratio
derives from the variability of RETm (yellow shaded area in Fig. 4b).
As a result, in Liguria R ranges broadly from a value between 2 and
3, which is close to the heuristic value R¼ 2 adopted byMelillo et al.
(2015) in Sicily. In the following analysis, we reported the recon-
structed rainfall events, rainfall conditions responsible for the
failures and the relative rainfall thresholds assuming R¼ 2, which
corresponds to a minimum dry interval of 48 h and 96 h in the CW
and in the CC period, respectively. Then, we assumed R¼ 3 which
corresponds to a minimum dry interval of 48 h in the CW and 144 h
and in the CC period and we compared the distributions of the
rainfall events and of the rainfall conditions, and the obtained
thresholds.
5. Results

Adopting CTRL�T and using information presented in the pre-
vious sections, rainfall events and empirical rainfall thresholds at
several exceedance probabilities were determined. The empirical
cumulative distribution function (ECDF) of the duration D and of
the cumulated rainfall E are shown in Fig. 5 for the RE (green
curves), MRC (purple curves) and MPRC data set (orange curves)
obtained by CTRL�T assuming R¼ 2. The corresponding statistics
are reported in Table 2. For each data set, the table contain the total
number, the minimum, and the maximum values and the first,
second, and third quartiles (Q1, Q2, and Q3) of the reconstructed
rainfall events (RE) and rainfall conditions (MRC and MPRC).

Fig. 5a reveals that more than 70% of the reconstructed-rainfall
events (RE, green curve) have a duration D< 100 h and 25% have
D� 6 h (Table 2). The shortest values of D are observed in theMPRC
data set (orange curve). Fig. 5b shows the ECDF for the RE,MRC and
MPRC data sets. In particular, the median of the cumulated rainfall E
for RE is lower (<20%) than that for MRC and MPRC (Table 2)
whereas the duration D is comparable for the three data sets. As a
consequence, the triggering conditions in the MRC and MPRC data
sets exhibit generally a higher mean rainfall intensity I (E/D)
(Fig. 5c), representing the most severe conditions reconstructed for
the single landslide. The same statistics indicates that the duration
D of the MRC are generally longer than that of MPRC, while the
cumulated rainfall E is substantially the same (Table 2).

The delay between the rainfall ending time and the landslide
occurrence time is null (0 h) for the majority of MPRC (286). The
delay is� 3 h for 69 MPRC and is between 4 and 48 h for the
remaining 85 MPRC.

Using the MRC and MPRC data sets, and adopting the method
proposed by Brunetti et al. (2010) and Peruccacci et al. (2012), we
determined objective cumulated event rainfall e rainfall duration
(ED) thresholds, and their associated uncertainties, for the study
Cumulated rainfall E (mm)

max min Q1 Q2 Q3 max

2005 1.1 5.4 18.2 57.6 1384.4
517 6.8 63.2 109.0 184.8 526.7
274 13.2 63.6 113.7 181.5 526.7
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area (Fig. 6).
Fig. 6a shows in log-log coordinates, the 801 (DL,EL) pairs rela-

tive to the MRC data set (purple dots), together with the ED fre-
quentist threshold at 5% exceedance probability (T5,MRC,R2, in
purple; see equation in Table 3) and its associated uncertainty
(shaded area). Analogously, Fig. 6b shows the 440 (DL,EL) pairs for
the MPRC data set (orange dots), the 5% ED frequentist threshold
(T5,MPRC,R2, in orange; see equation in Table 3) and the relative un-
certainty (shaded area). Fig. 6c shows the same thresholds in linear
coordinates and in the range 1�D� 120 h.
Fig. 5. ECDF curves of the duration D (a), cumulated rainfall E (b) and rainfall mean
intensity I (c) of the reconstructed rainfall events (green curves), multiple rainfall
conditions (purple curves) and maximum weight rainfall conditions (orange curves)
obtained by CTRL�T assuming R¼ 2. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)
We note that T5,MRC,R2 is higher than T5,MPRC,R2 for durations
D< 10 h; conversely, for longer durations, T5,MPRC,R2 is getting
higher due to the greater angular coefficient. The mean value of the
difference among the cumulated rainfall E for the two thresholds is
7mm (12%) for 1�D� 300 h. In particular, the E differences varies
from values below 2mm (4%) for D¼ 24 h to values that do not
exceed the 12mm (16%) for D¼ 300 h.

To evaluate how R affects the reconstruction of the rainfall
events, rainfall conditions, and the thresholds, we conducted a
sensitivity analysis assuming R¼ 2 and R¼ 3 (solid and dashed
Fig. 6. Cumulated event rainfall E (mm) vs. rainfall duration D (h) conditions that have
resulted in landslides in reconstructed by CTRL�T using (a) the MRC and (b) the MPRC
data set. Purple and orange curves are the corresponding 5% thresholds, T5,MRC,R2,
T5,MPRC,R2 (Table 1). In (a) frame, the size of the points (p probability) is proportional to
the weight w of DL,EL pairs. The data are shown in log-log coordinates. (c) T5,MRC,R2 and
T5,MPRC,R2 thresholds in the range 1 h�D� 120 h, with associated uncertainty por-
trayed by shaded areas, in linear coordinates. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)



Table 3
Equations of the rainfall thresholds for the possible initiation of landslides in Liguria forMRC andMPRC data sets varying the ratio R and the decay factor k and theweightw.N is
the number of (DL,EL) pairs.

Data
set

N R w k Threshold
label

Threshold
equation

MRC 801 2 f (d, EL, DL) 0.84 T5,MRC,R2 E ¼ (12.1 ± 1.8)�D(0.29±0.04)

MRC 863 3 f (d, EL, DL) 0.84 T5,MRC,R3 E ¼ (13.5 ± 2.1)�D(0.26±0.04)

MPRC 440 2 f (d, EL, DL) 0.84 T5,MPRC,R2 E ¼ (10.8 ± 1.7)�D(0.34±0.04)

MPRC 440 3 f (d, EL, DL) 0.84 T5,MPRC,R3 E ¼ (10.8 ± 1.7)�D(0.34±0.04)

MRC 916 2 f (d, EL, DL) 1.00 T*5;MRC;R2
E ¼ (8.6 ± 0.9)�D(0.43±0.04)

MRCa 916 2 f(n) 1.00 T**5;MRC;R2
E ¼ (7.3 ± 1.1)�D(0.44±0.04)

a Melillo et al. (2016).
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curves, respectively, in the subsequent figures). For the purpose, we
compared the ECDF of D and E for RE, MRC, MPRC (Fig. 7). In addi-
tion, we investigated the differences between the 5% thresholds for
MRC and MPRC (Fig. 8).

Below Q2 (i.e. D< 30 h), we found small differences (3%) be-
tween the ECDF curves of D for the RE data sets (green curves in
Fig. 7a). The differences slowly increase up to 25% at Q3 (D� 100 h).
Analogously, in terms of E, the differences are between 5% and 10%
fromQ2 to Q3, in the range 20� E� 65mm (green curves in Fig. 7b).
ForMRC the percentage difference in the ECDF ofD is always 12% up
to Q3 (purple curves in Fig. 7a), while for E the ECDF differences do
not exceed 5% (purple curves in Fig. 7b). Comparing the ECDF
curves for the MPRC, we noted that they overlap, for both D and E
(orange curves in Fig. 7a and b).

Log-log plot in Fig. 8 shows the 5% ED thresholds calculated
using a MRC data set for R¼ 2 and R¼ 3. The obtained thresholds
are substantially similar with differences in cumulated rainfall
lower than 1mm (1%) at D¼ 24 h. The maximum difference is
6mm (7%) for the longest duration (D¼ 517 h). The 5% thresholds
for MPRC are coincident (orange curves in Fig. 8).
Fig. 8. ED thresholds for possible landslide occurrence, at 5% exceedance probability
levels, reconstructed by CTRL�T using aMRC (purple curves) andMPRC (orange curves)
dataset obtained assuming R¼ 2 (solid curves) and R¼ 3 (dashed curves), respectively.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
6. Discussion

6.1. Algorithm improvements

CTRL�T aims at reducing the computational time of the single
steps, from the rainfall event reconstruction to the threshold defi-
nition. The actions performed by CTRL�T prove robust, and the
implementation software do not suffer from computer storage or
processing limitations. More in details, the algorithm improve-
ments reduce the calculation time significantly in the: i) selection
of the available rain gauges, ii) identification of the representative
Fig. 7. Comparison between ECDF curves of the duration D (a) and cumulated rainfall E (b) a
three data sets assuming R¼ 2 and R¼ 3, respectively.
rain gauge, and iii) reconstruction and analysis of the rainfall con-
ditions responsible for the failure.

As for the first two points, the long manual procedure to asso-
ciate a failure to the closest rain gauge is now overcome by the
automatic selection of all the available stations within a given
distance (Rb) from the landslide. Rb is parameterized and can vary
as a function of the density of the rain gauges. CTRL�T identifies
automatically the representative rain gauge through a weight,
which is a function of both geographical (distance between land-
slide and rain gauge) and hydrological (cumulated rainfall and
duration of the rainfall event) characteristics, associated to the
ssuming the two values of R. Solid and dashed curves represent the distribution for the
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selected stations.With the proposedweight, the closest rain gauges
are selected in almost 80% of the cases. Further improvements
might be addressed to the weight evaluation by including
orographic and geomorphological parameters, such as the eleva-
tion difference between landslide and rain gauge. The procedure
implemented in CTRL�T allows running the algorithm also when
the rainfall information is available as gridded rainfall maps (e.g.,
obtained through satellite data). In this case, each pixel of the map
(e.g., 25 km � 25 km) is treated as a “virtual” rain gauge. Other-
wise, the manual reconstruction of rainfall conditions using grid-
ded rainfall maps would be time consuming.

Regarding the third point, the identification and selection of the
rainfall conditions responsible for the landslide was previously left
to the investigator and it was therefore subjective and time
consuming. The introduction of the automatic and reproducible
selection of rainfall conditions based on weights solves this draw-
back and tries to face one of themain sources of uncertainties in the
threshold definition process. An additional improvement is ob-
tained introducing the decay factor k. In the previous version, all
the (DL,EL) pairs were considered equally probable for the activation
of the landslide. However, conditions characterized by long dura-
tions and low mean intensity are unlikely to trigger a shallow
landslide. The decay factor k damps the cumulated rainfall
removing those rainfall condition with a small (<10%) rainfall in-
crease compared to the previous condition.

In the new version of the algorithm, we add an action to
calculate thresholds and their uncertainties adopting a frequentist
method (Brunetti et al., 2010; Peruccacci et al., 2012). The proced-
ure that begins from the reconstruction of the rainfall events and
ends with the definition of thresholds is now faster than before and
completely automatized, thus objective and reproducible. The
structure of the algorithm also allows the implementation and/or
integration of other threshold calculation methods.

Further details regarding CTRL�T, e.g., the required input files
and the generated output files are available in Appendix A.

6.2. Parameter settings

As described in Melillo et al., (2015), in the previous version of
the algorithm, the same values of the parameters were used to
reconstruct the rainfall events from rainfall data recorded in all
available rain gauges. This aspect represents a great limitation,
given that the rain gauges located in wide areas might record differ
rainfall regimes. In order to solve this problem, CTRL�T performs
the reconstruction of the rainfall event using an input file (see
Appendix A), containing the values of the selectable parameters,
which can be adjusted for each rain gauge.

As stated in Section 4, we adopted the average monthly Aridity
Index to establish the length of “cold” and “warm” periods. Then,
we used the real evapotranspiration in the two periods to set the
length of the two dry intervals (CWand CC). The calculation of these
parameters is fundamental when using the algorithm in different
seasonal and climatic contexts, and with various soil types. The
procedure to determine CW and CC is still not automatized.

6.3. Rainfall events and thresholds

As reported in the previous section, the statistics of ECDF curves
for RE, MRC, and MPRC data sets (Fig. 5) suggest that the triggering
conditions selected in the MRC or MPRC data sets have a rainfall
mean intensity I (E/D) higher than that of RE. Generally, to calculate
the thresholds it is worth to use the most severe MRC (or MPRC)
conditions instead of the whole rainfall event (RE) in order to avoid
an underestimation of the rainfall responsible for the landslide.
Note that only in few cases (1%), the (D,E) pairs for MRC, MPRC and
RE coincide.
Fig. 6c and the equations of the two thresholds obtained for the

MRC and MPRC data sets (T5,MRC,R2 and T5,MPRC,R2 in Table 3) reveal
that the thresholds are statistically indistinguishable if considering
the uncertainties associated with the curves (Fig. 6c). Since the
number of rainfall conditions used to determine the thresholds is
largely above 75, which is the minimum number to obtain stable a

and g parameters (Peruccacci et al., 2017), we acknowledge that the
two curves are very similar despite the rather large uncertainties.

6.4. Sensitivity analysis of the R value

The two different values of the R parameter affect the ECDF
curves of the reconstructed rainfall events (solid and dashed green
curves in Fig. 7). While they are comparable in terms of cumulated
rainfall E, they are dissimilar regarding the rainfall duration D. As
the value of the minimum dry period in the cold season (CC) in-
creases from 96 h (R¼ 2) to 144 h (R¼ 3) the duration of the rainfall
events increases and the total number of RE decreases. A higher
value for the minimum dry period (needed to separate two sub-
sequent rainfall events) makes more difficult the separation of
events; consequently, the length of the rainfall event increases. The
duration of the MRC is slightly longer when using R¼ 3 instead of
R¼ 2, while the distribution of the cumulated rainfall remains
unvaried (purple curves in Fig. 7). The ECDF curves for MPRC are
overlapping (orange curves in Fig. 7) because the MPRC selected by
CTRL�T in the two cases (R¼ 2 and R¼ 3) are coincident. This oc-
curs if, for each landslide, the rainfall events reconstructed using
R¼ 2 and R¼ 3 are the same or if the rainfall events for R¼ 2 are
included in those reconstructed for R¼ 3 and the additional MRC
related to R¼ 3 are not able to vary the selection ofMPRC. However,
differences are not so evident given that in the “cold” period CC
(NovembereMarch), 72% of the rainfall events reconstructed using
R¼ 2 and R¼ 3 coincide. This means that these events are sepa-
rated by at least a minimum dry period of 144 h.

Inspection of Fig. 8 reveals that the four thresholds obtained by
using the MRC and MPRC data sets and the two R values do not
differ much in the study area. In particular, thresholds for R¼ 2
(T5;MRC;R2) and R¼ 3 (T5;MRC;R3) are completely overlapping while
the four thresholds, considering the uncertainties associated with
them (Table 3), can be considered statistically indistinguishable.
Therefore, the uncertainty introduced using different parameters
(e.g. parameters obtained by the proposed RET analysis) is negli-
gible and substantially does not affect the threshold calculation.

6.5. Threshold comparison

We compared the results obtained providing as input the same
landslide and rainfall data sets to the old version of the algorithm
(Melillo et al., 2016) and to the release proposed in this work. Fig. 9
shows the threshold T**

5;MRC;R2 obtained using the previous version
of the algorithm, and the thresholds T*

5;MRC;R2 and T5;MRC;R2 ob-
tained using the new release of the algorithm and considering k¼ 1
and k¼ 0.84, respectively (see Table 3 for the threshold parame-
ters). In particular, the T*

5;MRC;R2 threshold has the same slope of the
T**5;MRC;R2 and a higher intercept. The T5;MRC;R2threshold has a
different slope and a range of duration shorter than the others,
given that the use of the k decay factor decreases the durations of
the rainfall conditions responsible for the failures. Moreover, using
the k decay factor, the rainfall amount necessary to initiate land-
slides is lower for duration longer than 10 h (see T5;MRC;R2 and
T*5;MRC;R2 in Fig. 9).

The introduction of weights for the rainfall conditions and of a
decay factor for the cumulated rainfall made the thresholds more
similar to those defined by an expert investigator. In fact, the earlier



Fig. 9. ED thresholds for possible landslide occurrence, at 5% exceedance probability
level, reconstructed by CTRL�T using a MRC dataset obtained by the old version of the
algorithm (cyan curve) and new release (magenta and purple curves). (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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version of the algorithm returned thresholds lower and steeper
than those determined manually (Melillo et al., 2016). We maintain
that CTRL�T reproduces better the reconstruction of the rainfall
condition responsible for landslide triggering performed by an
expert investigator.
Fig. 10. Example of the output file named Landslide_ID_project_ID_lan.pdf. (a) Infor-
mation about the descriptive statistics of the rain gauge; (b) distribution of the
reconstructed (DE,EE) rainfall pairs in the logarithmic plane; (c) hourly rainfall mea-
surements of the reconstructed rainfall event recorded by the representative rain
gauge; (d) multiple (DL,EL) rainfall conditions responsible for the landslide in the
logarithmic plane.
7. Concluding remarks

The definition of reliable and accurate rainfall thresholds poses
several critical issues and sources of subjectivity. The use of a
standardized and automatized procedure for the reconstruction of
the rainfall conditions responsible for failures and for threshold
calculation is necessary for enhancing the objectivity and repro-
ducibility of the thresholds, especially for thresholds to be used in
landslide early warning systems.

In this work, we faced this problem and updated the algorithm
proposed by Melillo et al. (2015, 2016), adding new features and
ameliorations. CTRL�T exploits continuous rainfall measurements,
and landslide information, to (1) reconstruct rainfall events; (2)
select automatically the representative rain gauges; (3) identify
multiple rainfall conditions responsible for the failure in terms of D
and E, modelling the cumulated event rainfall; (4) attribute a
probability to each rainfall condition; and (5) calculate probabilistic
rainfall thresholds and their associated uncertainties.

The main innovations (novelties) concern (i) the automatic se-
lection of the representative rain gauge that is chosen by analyzing
the distance between the rain gauge and the landslide and the
characteristics of the rainfall events recorded by the station, and (ii)
the assignment of a probability to the single or multiple rainfall
conditions responsible for the landslide. In addition, CTRL�T in-
corporates the procedures to calculate objective and reproducible
thresholds developed by Brunetti et al. (2010) and Peruccacci et al.
(2012).

We maintain that CTRL�T enhances the definition of empirical
rainfall thresholds for landslide forecasting. In particular, the use of
the algorithm standardizes and accelerates considerably the slow
and tedious process of the reconstruction of the rainfall events and
reduces the subjectivity inherent in the manual treatment of the
rainfall and landslide data. This decreases the uncertainty associ-
ated with the definition of the rainfall conditions responsible for
landslides and allows the possibility of a periodic and reproducible
update of the thresholds, definitely. This has a positive impact on
the application of thresholds in early warning systems for
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operational landslide forecasting.
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Appendix A. Supplementary data

Supplementary data related to this article can be found at
https://doi.org/10.1016/j.envsoft.2018.03.024.
Fig. 11. Example of the output file named Landslide_ID_project_ID_lan.pdf, for the MRC data
(b) ECDF of D; (c) ECDF of E; (d) ECDF of RRG_distance; (e) marginal distributions of the ra
circular buffer, RRG_select (grey bars) and of the number of multiple rainfall conditions, n_MR
reader is referred to the Web version of this article.)
Appendix A. Software and data

We implemented CTRL�T (Calculation of Thresholds for Rain-
fall-induced Landslides�Tool) using the R open-source software for
advanced statistical computing and graphics, release 3.3.3 (http://
www.r-project.org). CTRL�T was finalized in June 2017 and
should work on computers with at least 4 GB of RAM. The code can
be downloaded free of charge at the following website: http://
geomorphology.irpi.cnr.it/tools/rainfall-events-and-landslides-
thresholds/ctrl-algorithm/ctrl-code/CTRL_code.R/. The download-
able executable file is 79 KB. In addition, an example of the input
files required by the algorithm can be downloaded free of charge at
the following website http://geomorphology.irpi.cnr.it/tools/
rainfall-events-and-landslides-thresholds/ctrl-algorithm/input-
demo/INPUT.zip/. The downloadable file is 37.55MB.

The algorithm is divided into three main blocks (Fig. 1), which
perform i) the reconstruction of rainfall events, ii) reconstruction of
the rainfall conditions responsible for the landslide and iii) the
definition of the rainfall thresholds, respectively.
Input files

Here, we describe the information provided by the input text
files (boxes labelledwith “INPUT” in the left upper part of the logical
set (first page): (a) distribution of the (DL,EL) pairs, in log-log coordinates (purple dots);
nk of representative rain gauges based on the distance from the landslides within the
C (purple bars). (For interpretation of the references to colour in this figure legend, the

https://doi.org/10.1016/j.envsoft.2018.03.024
http://www.r-project.org
http://www.r-project.org
http://geomorphology.irpi.cnr.it/tools/rainfall-events-and-landslides-thresholds/ctrl-algorithm/ctrl-code/CTRL_code.R/
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http://geomorphology.irpi.cnr.it/tools/rainfall-events-and-landslides-thresholds/ctrl-algorithm/input-demo/INPUT.zip/
http://geomorphology.irpi.cnr.it/tools/rainfall-events-and-landslides-thresholds/ctrl-algorithm/input-demo/INPUT.zip/
http://geomorphology.irpi.cnr.it/tools/rainfall-events-and-landslides-thresholds/ctrl-algorithm/input-demo/INPUT.zip/
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scheme in Fig. 1). One input file (table_of_raingauges.csv) contains
information on the rain gauges (cod_area, longitude, latitude,
pk_sensor, ID_rain_gauge) and on the parameters used by the al-
gorithm to reconstruct the rainfall events (gs, p1_c, p1_w, p2_c,
p2_w, p3, p4_c, p4_w, sws, ews) as described in Melillo et al., (2015).
In particular, cod_area is an identification code of the administra-
tive region where the sensor is located, longitude and latitude are
the coordinates (expressed in decimal degrees), and ID_rain_gauge
is a unique numeric code derived from the rain gauge geographic
coordinates. A series of input files named Time-
Series_Sensor_ID_rain_gauge.csv contain the time stamp and the
hourly rainfall measurements of each sensor. An additional input
file named landslides. csv contains information on the documented
landslides. In particular, each record reports the: (i) ID_project,
which identifies the rainfall event; (ii) ID_lan, which gives the
temporal order of the failures associated with the single rainfall
event (i.e., a is the 1st landslide, b the 2nd, etc.); (iii) class_number,
which indicates the landslide multiplicity; (iv) class_type, which is
the failure type; (v) longitude and latitude of the landslide; (vi)
geo_acc, which is the level of mapping accuracy (Peruccacci et al.,
2012); (vii) failure occurrence date (day, month, year and time);
and (viii) date_acc, which is the accuracy of the occurrence date (T1,
T2, and T3). T1 includes landslides for which the exact time of
occurrence is known. T2 and T3 are used when the part of the day or
the day of occurrence are known, respectively.

Output files

The three blocks of the algorithm (boxes in the right part of the
logical scheme in Fig. 1) produce different output files.

The first block performs the reconstruction of the rainfall events
and generates the folder Reconstructed rainfall events, which con-
tains an output file named Rainfall events. csv, listing the recon-
structed rainfall events. In particular, for each record ID_rain_gauge,
is the rainfall station code, index_pos1 and index_pos2 are indexes
Fig. 12. Example of the output file named Landslide_ID_project_ID_lan.pdf (second to seve
coordinates; variation of the values of (c) the a parameter and (d) the related uncertainty
related to the rainfall series of each rain gauge, RE_start_date and
RE_end_date, are the starting and the ending date of each rainfall
event. The remaining fields are the rainfall duration (D_E), the
cumulated rainfall (E_E), the rainfall mean intensity (I_E), the
maximum hourly rainfall (IP_E), the maximum cumulated rainfall
in 24 h (Emax24_E), and a class (A_class), from 1 to 6, related to the
rainfall event classification of Alpert et al. (2002). After the recon-
struction of rainfall events, the algorithm calculates the maximum
hourly rainfall and the maximum cumulated rainfall in 24 h. This
allows to check, and possibly remove anomalous rainfall events.

The second block reconstructs the multiple conditions (MRC)
likely responsible for the failures and generates the folder Recon-
structed rainfall conditions, which contains three outputs. The first
output is the folder Individual files containing a single file for each
landslide named Landslide_ID_project_ID_lan.pdf. This file contains,
for each rain gauge included in a buffer centered in the landslide
location (see section 2.1), the: (i) information about the descriptive
statistics of the rain gauge (Fig. 10a).; (ii) distribution of the
reconstructed (DE,EE) rainfall pairs in the logarithmic plane
(Fig. 10b); (iii) hourly rainfall measurements of the reconstructed
rainfall event recorded by the representative rain gauge (Fig. 10c);
(iv) multiple (DL,EL) rainfall conditions responsible for the landslide
in the logarithmic plane (Fig. 10d). The second output is a text file
named Processing Summary report. txt. This file contains the sta-
tistics about the total number of the analyzed, reconstructed, and
discarded landslides. We produce a list of the discarded landslides,
labelled with the ID_project attribute. The third output is a file
named MRC. csv. In this file, ID_project identifies the rainfall event
with landslide(s), ID_lan lists chronologically the landslides trig-
gered by the same rainfall event, date is the failure occurrence time,
RRG_select is the rank of the representative rain gauge based on the
distance from the landslide within the circular buffer, and
RRG_distance is the distance between the representative rain gauge
and the landslide locations. The file lists also information on: the
rainfall duration (D_L), the cumulated event rainfall (E_L), the
nteenth pages): thresholds at 5% exceedance probability, in (a) linear and (b) log-log
Da.
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rainfall mean intensity (I_L), the rain gauge code (ID_rain_gauge),
the number of rainfall events (REN) associated with the
ID_rain_gauge, the maximum hourly rainfall (IP_L), the maximum
cumulated rainfall in 24 h (Emax24_E), a class (A_class, from 1 to 6)
according to Alpert et al. (2002) rainfall event classification, a bi-
nary value (ms_flag) that indicates if the currently rainfall condition
have amaximumvalue of the scorew (n_MRC¼ 1), and the number
of multiple rainfall conditions (n_MRC).

The third block defines the rainfall thresholds using MRC and
MPRC data sets (see Section 2) and generates the folder Rainfall
thresholds, which contains four outputs representing the results of
the analysis. For each subset, the algorithm generates two distinct
files. The first files (boot_MRC.csv or boot_MPRC.csv) contain in-
formation on the parameters (a and g) that define 16 threshold
curves, at different exceedance probabilities (from 0.005 to 50%).
For each threshold, six fields are specified, i.e.: the name of the
threshold parameters (variable), the corresponding exceedance
probabilities (probability), the mean value (mean) obtained through
the bootstrap process (Peruccacci et al., 2012), the standard devi-
ation value (sigma) and the extreme values (min, max). The second
files (boot_MRC.pdf or boot_MPRC.pdf) contain, in the first page: the
distribution of the (DL,EL) pairs, in log-log coordinates (purple dots
in Fig. 11a); the empirical cumulative distribution functions (ECDF)
of D (Fig. 11b), E (Fig. 11c) and RRG_distance (Fig. 11d). Moreover, the
marginal distribution of the representative rain gauge ranking,
based on the distances between all rain gauges within the circular
buffer and the landslide (RRG_select), and of the number of multiple
rainfall conditions n_MRC are also reported (grey and purple bars in
Fig. 11e, respectively). Here we report as example the file related to
theMRC data set; the one related to theMPRC data set is analogous.
In the subsequent 16 pages, are reported the graphs related to: i)
the thresholds at exceedance probabilities from 0.005 to 50%, in
linear and log-log coordinates (Fig. 12a, b, respectively), and the
variation of the values of the a parameter and the related uncer-
tainty Da (Fig. 12c, d, respectively).
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